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COSMOS Research Testbed

e Cloud Enhanced Open Software Defined
Mobile Wireless Testbed for City-Scale
Deployment

o Pilotsite at 120th St. and Amsterdam Ave
in New York City

o Experimentation testbed for advanced
wireless research and applications

o Sensing and high speed communication

o Edge computing clusters with scalable

CPU and GPU resources
o T4 and A100 Nvidia GPUs
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Real Time Video Feeds in Smart City Intersectlons

Why do we need real time video feeds?

Real-time use cases:
o Traffic analytics
o Communication and feedback with
cloud-connected vehicles
o Social distancing analysis in
pandemics
o Radar screen
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Privacy Concerns in Smart City Intersections

Personal privacy is inherently compromised when using ground floor

video feeds.
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Privacy Concerns in Smart City Intersections

Personal privacy is inherently compromised when using ground floor
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Privacy Concerns in Smart City Intersections

Personal privacy is inherently compromised when using ground floor

video feeds. s W= e
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Privacy Concerns in Smart City Intersections

Goal: Build a pipeline for anonymization of faces and license plates in
intersection videos.
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Privacy Concerns in Smart City Intersections

Goal: Build a pipeline for anonymization of faces and license plates in

intersection videos.
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Privacy Protection in Smart City Intersections

Deep learning based anonymization pipeline
o custom dataset collection
e supervised training of customized YOLOv4 models in Darknet framework
e inference optimization with TensorRT to achieve real time performance

Privacy Protected
Intersection Video

Cropped face

Intersection Video

Person/Vehicle Detector

Blurring |[Blurred video > 7_:'

Cropped license
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COSMOS Ground Floor Intersection Dataset

COSMOS pilot site:

e 16 videos, 180 seconds each
30 FPS, 3840 x 1920 pixels
Weather conditions

o daytime, nighttime, cloudy, sunny, rainy

Every 6th frame is annotated — over 14,000 ground truth frames
o 70,186 faces
o 124,614 licenses

Median object areas — small

o faces: 198 pixels
o licenses: 83 pixels
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COSMOS Ground Floor Intersection Dataset

COSMOS pilot site:
e 16 videos, 180 seconds each
e 30 FPS, 3840 x 1920 pixels
o Weather conditions

Daytime sunny

o daytime, nighttime, cloudy, sunn
o Every 6th frame is annotated — of

o 70,186 faces
o 124,614 licenses

o Median object areas — small
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COSMOS Ground Floor Intersection Dataset

COSMOS pilot site:
e 16 videos, 180 seconds each
e 30 FPS, 3840 x 1920 pixels
o Weather conditions

Daytime rainy

o daytime, nighttime, cloudy, sunngss ™
« Every 6th frame is annotated — ofSEES
o 70,186 faces
o 124,614 licenses
o Median object areas — small
o faces: 198 pixels
o licenses: 83 pixels
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COSMOS Ground Floor Intersection Dataset

COSMOS pilot site:
e 16 videos, 180 seconds each
e 30 FPS, 3840 x 1920 pixels
o Weather conditions

Nighttime rainy

i

o daytime, nighttime, cloudy, sunn : |
o Every 6th frame is annotated — ' 1L
o 70,186 faces o o 2
o 124,614 licenses
o Median object areas — small
o faces: 198 pixels
o licenses: 83 pixels
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COSMOS Ground Floor Intersection Dataset

COSMOS pilot site:
e 16 videos, 180 seconds each
e 30 FPS, 3840 x 1920 pixels
o Weather conditions

Daytime overcast

o daytime, nighttime, cloudy, sunn
« Every 6th frame is annotated — o_ s
o 70,186 faces
o 124,614 licenses
o Median object areas — small
o faces: 198 pixels
o licenses: 83 pixels
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YOLOvV4 Object Detection

MS COCO Object Detection

e YOLOVA4 is a single stage model that

EfficientDet (D0~D4)

real-time

detects, localizes, and classifies relevant y \
YOLOV4 (ours)

objects “
e There is a trade off between inference

AP
t3

~4—YOLOV4 (ours)

speed and detection accuracy ~-vorows s
« Small objects (faces and license plates) Igfi'{i]m oras
require large input resolution models CenterMask [40] \
o 608 x 608 ST T msewn
o 960x960 Ovjectbeteeton. Anir abs/200 Tos3 P SpeetenaAceureerer

o 1440 x 1440
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YOLOv4 Model Training and Validation

e Pre-trained on MS COCO object detection dataset

e 2 class detection — faces and license plates

o 10,000 iterations on custom ground floor intersection dataset

e Training completed using NVIDIA A100 and T4 GPUs hosted on Google Cloud
Platform

e 2 out of 16 videos are left out of training for validation

o Weights yielding the highest validation mAP are chosen as the final weights

o CloU loss function

o DropBlock regularization

e 64 frame batch size
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https://docs.google.com/file/d/1klU_Bei3S_OYjbBPurEm1Fa2x9lB-aiS/preview

Number of objects

Programmatic Accuracy Evaluation - Results (Visible Face Recall)

608 x 608 “visible” face recall:
960 x 960 “visible” face recall:
1440 x 1440 “visible” face recall:

5000

3000

2000

1000

960x960 Face Recall vs Object Pixel Area Threshold

~@~ Recall

| "Visible" Threshold

BN False Negatives
EmE True Positives

100 200 300 500 900 1000 1500 2000

Object Area Threshold (pixels)
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How many relevant objects are detected?
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Recall = ———
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1440x1440 Face Recall vs Object Pixel Area Threshold
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Programmatic Accuracy Evaluation - Results (Visible License Recall)

How many relevant objects are detected?
tp
tp+ fn

608 x 608 “visible” license recall: 99.71%
960 x 960 “visible” license recall: 99.96% Recall =
1440 x 1440 “visible” license recall: 99.96%

960x960 License Recall vs Object Pixel Area Threshold 1440x1440 License Recall vs Object Pixel Area Threshold
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Manual Pipeline Validation — Overview

e Ground truth labels are scarce and must be prioritized for training
o Anonymization accuracy is validated by visually inspecting output on new

intersection videos
o Areas are defined where an exposed face or license is counted as a “miss”
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Manual Pipeline Validation — Results

TABLE I: Manual Accuracy Evaluation Results Manual evaluation results
Model Face Recall License Plate Recall confirm generalization to new
Resolution . .
960x960 98.94% 98.61% Intersection scenes.
1440x1440 98.61% 98.62%
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Anonymization in Real Time

® To operate the pipeline in real-time, inference latency needs to be

minimized — Computational complexity of forward pass is immense

e Real-time target is 33ms end-to-end latency. This includes:

o frame read
preprocessing
inference
nms/postprocessing
anonymization

O O O O O

frame write

©COSMOS

Blurring Pipeline Time Profile

OpenCV Read Frame
OpenCV Write Frame 2 207
17.7%

NumPy Blur Objects
4.7%

PyTorch Detect Objects
74.3%
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Operating at Real Time

® TensorRT is an inference optimization framework for deep learning
models on Nvidia GPUs
o0 FP16 quantization
o Layer and tensor concatenation
o Tuned GPU kernel selection
© Dynamic tensor memory

7= 40
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Inference Optimizations with TensorRT

TensorRT Anonymization Pipeline

Fine Tuned Darknet YOLOv4

TensorRT GPU Inference Optimization

P %@? . e Serialized Engine
= o

Deserialized Inference Engine

Serialize

Anonymized Video

Deserialize
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TensorRT Optimized Pipeline vs. Non-Optimized

® Pipeline configurations
o 960 x 960 model
o batchsize=1
0 FP32 precision
o 1xA100 GPU

e TensorRT C++ Pipeline reduces
inference bottleneck

e Frame read/write operations are
also faster in C than in Python

Average Time (ms)

35

30

25

20

15

10

PyTorch v

s TensorRT Anonymization Pipeline Time Profile

Frame Read

mmm TensorRT C++ API Pipeline
mm PyTorch Pipeline

Preprocess Inference NMS Frame Write
+
Postprocess
Subprocess
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Anonymization Pipeline Timing Profiles

Frame Read

Preprocess

Inference

960 x 960 input resolution
T4 GPU

batch size=1

FP16

63.34 ms/frame

©COSMOS

Frame Write

NMS + Postprocess

Preprocess

Frame Read

Frame Write

NMS + Postprocess

Inference

608 x 608 input resolution
A100 GPU

batch size =8

FP16

18.28 ms/frame
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Latency Analysis Takeaways

TABLE II: Anonymization Pipeline Timing with Various Configurations

1. Jetson Nano (TegraX1) can’t operate the

pipeline anywhere close to real-time.

Even the 608x608 model operates at:

25.94 + 563.34 + 8.23 = 597.5ms = 1.674 FP

2. Several configurations (GPU/FP

S

precision/batch size) operate under 33.3

ms time constraint, excluding frame

read/write. For example: 960x960, A100,

FP16, BS=1 —
9.7 +16.33 + 0.51 = 26.54 ms = 37.68 FPS
3.  Average latencies improve if we can

tolerate batch inference. For example:
960x960, A100, FP16, BS=8 —

Model GPU Precision Batch Size Full Frame Read  Preprocess Inference NMS +  Frame
Input Pipeline Postprocess Write
Resolution
(pixels)

TensorRT C++ Pipeline
608x608 TegraX1 FP16 1 653.79 5.13 25.94 563.34 823 5113
960x960 TegraX1 FP16 1 1491.49 10.79 64.74 1305.81 10.80 99.32
1440x1440 TegraX1 FP16 1 3285.98 23.74 14434 2899.58 13.40 204.89
608x608 TeslaT4 FP16 1 29.06 1.74 4.40 17.94 0.27 470
960x960 TeslaT4 FP16 1 63.34 3.65 10.67 37.68 047 10.86
960x960 TeslaT4 FP16 4 63.71 391 10.73 38.32 045 10.28
960x960 TeslaT4 FP16 8 63.37 3.87 10.96 38.48 043 9.63
1440x1440 TeslaT4 FP16 1 139.35 7.64 2343 84.97 0.76 22.55
1440x1440 TeslaT4 FP16 4 139.93 7.88 2351 85.97 0.75 21.81
608x608 TeslaT4 FP32 1 44.75 1.59 434 33.99 0.24 4.58
960x960 TeslaT4 FP32 1 97.46 3.66 10.52 7241 0.44 10.43
960x960 TeslaT4 FP32 4 99.34 3.89 11.05 7351 0.45 10.43
1440x1440 TeslaT4 FP32 1 223.01 7.65 2343 168.4 0.76 2278
608x608 Al100 FP16 1 21.82 1.90 441 9.83 0.33 5.34
960x960 A100 FP16 1 42.44 4.05 9.7 16.33 0.51 11.83
960x960 A100 FP16 4 38.82 4.00 9.75 13.16 0.51 11.39
960x960 Al100 FP16 8 38.1 4.03 10.13 12.39 0.49 11.05
1440x1440 Al100 FP16 1 83.19 82 21.22 28.26 0.83 24.67
1440x1440 A100 FP16 4 79.35 8.14 21.34 24.67 0.80 2439
608x608 Al100 FP32 1 23.64 1.74 4.28 12.17 0.28 5.15
960x960 Al00 FP32 1 46.88 39 9.66 21.34 0.50 11.47
960x960 A100 FP32 4 42.47 3.88 9.92 17.09 0.49 11.08
1440x1440 Al100 FP32 1 91.62 8.07 21.06 37.22 0.81 2445

PyTorch Python Pipeline
608x608 TeslaT4 FP32 1 78.43 3.63 491 61.01 0.01 7.65
960x960 TeslaT4 FP32 1 173.31 9.52 10.93 134.77 0.01 16.08
608x608 Al100 FP32 1 63.05 3.02 3.89 46.86 0.01 8.01
960x960 A100 FP32 1 79.94 11.07 8.06 41.89 0.01 16.89
960x960 A100 FP32 2 63.73 7 8.1 30.22 0.02 16.62
1440x1440 Al100 FP32 1 130.89 14.12 20.11 58.86 0.02 34.41

10.13 +12.39+0.49 = 23.01 ms = 43.46 FP

All values are average execution time per frame measured in milliseconds. Timing operations incur negligible overhead (= 10us).
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Assessment of Risk of Violating Privacy - Edge Cases

Licenses passing poles
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People passing license

&5 COLUMBIA | ENGINEERING 45

TSN The Fu Foundation School of Engineering and Applied Science



Assessment of Risk of Violating Privacy - Edge Cases

Faces superimposed on other objects
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Assessment of Risk of Violating Privacy - Edge Cases

Buses and branches Person holding object
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Conclusion

e The blurring pipeline anonymizes up to 99% of faces and license
plates
o Edge cases can be reduced with more (and better) training data
and data augmentation
e The blurring pipeline operates in real time
o TensorRT inference optimizations, datacenter GPUs, and
reduced precision calculations drastically increase throughput

Future work could explore unsupervised detection and model reduction
for edge devices
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Questions
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